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Abstract

ISIS++ (Iterative Scalable Implicit Solver in C++) Version 1.0 is a portable, object-oriented
framework for solving sparse linear systems of equations. It includes a collection of Krylov

solution methods and preconditioners, as well as both uni-processor (serial) and multi-
processor (scalable) matrix and vector classes. Though it was developed to solve systems of
equations originating from large-scale, 3-D, finite element analyses, it has applications in
many other fields.

This document defines the v 1.0 interface specification, and includes the necessary instructions
for building and running ISIS++ on Unix platforms. The interface is presented in annotated
header format, along with background on design and implementation considerations. A finite
difference modeling example problem is included to demonstrate the overall setup and use.
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1 Introduction
ISIS++ (Iterative Scalable Implicit Solver in C++) is a portable, object-oriented

framework for solving sparse linear systems of equations. It includes a collection of Krylov

subspace solution methods and preconditioners, as well as both uni-processor (serial) and
multi-processor (scalable) matrix and vector classes (Figure 1). Though it was developed to
solve systems of equations originating from large-scale, 3-D, finite element analyses, it has
applications in many other fields.

ISIS++ is designed to provide simple interchangeability of components – both from
within the ISIS++ system and from other packages. The ISIS++ framework facilitates
integrating components from various libraries, and in particular the matrix-vector functional
units and their corresponding data structures. The first practical test of this concept was the
integration of the Aztec [13] DMSR matrix-vector classes.

A primary goal of the ISIS++ project is to decompose the problem space into a set of
independent, object-oriented functional units, and in particular to decouple sparse matrix data
structures and their implementations from their use in Krylov solvers and preconditioners.
This can be viewed as developing archetypal interfaces between matrix, vector, solver and
preconditioned objects. In this manner, matrix-vector objects can be implemented from
various libraries while maintaining functional compatibility with the solvers and
preconditioners.

The advantages of the framework design include improving the ability to leverage
existing work. This facilitates usage of implementations and data structures tuned to a
particular application and computing platform. The source code for the solver and
preconditioned components is decoupled from the matrix-vector implementations’. Thus,
ISIS++ can be built using the matrix-vector implementation best suited to the task and
compute system at hand, with no changes to the solver or preconditioned source code.

For this concept to work in practice, the task of including library components must be
relatively straightforward and efficient. This design objective was addressed by a policy of
minimal but sufficient core components. That is, the abstract base classes define the core set
of interactions between solvers, preconditioners, matrix and vector objects, regardless of their
implementation. The purpose of keeping the core interface requirements minimal is to
simplify (i.e., not unduly restrict or complicate) adding new implementations into the
framework. To support parallel implementations, care has been taken to avoid inclusion of
any function not deemed scalable.

‘ For preconditioners which access the matrix values directly, completely generalized access can potentially incur
a large overhead cost (e.g., if a matrix is stored as CRS format and the preconditioned attempts to access the
values column-wise this is an extremely inefficient process). We use a hierarchical mechanism to limit access to
data structures so as to preclude these types of inefficiencies,
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Figure 1. ISIS++ framework overviewz.

It is essential that the performance of the mathematical components incorporated from
other libraries be comparable to that of their “native” state. That is, the overall performance
of a combination of components within ISIS++ should be comparable to that observed when
those components are run in their original stand-alone state. Our observation is that a penalty ‘
is incurred for providing fully generalized matrix access functions for use in the
preconditioners. Specifically, in cases where the preconditioned needs an internal .
representation of the sparse matrix, there may be a memory and/or a “copy” time overhead
associated with the translation. However, specializations of the matrix classes can be
provided to give the preconditioned knowledge of the data structures, allowing direct (fast)
access to the underlying data with minimal overhead.

The remainder of this document is organized as follows. The ISIS++ framework design
and core base classes are discussed in section 2. The solver, preconditioned, and matrix/vector
class implementations are presented in sections 3, 4, and 5, respectively. An example
problem is described in section 6. The installation procedures are provided in section 7, and
the references are in section 8.

Further information and the most current updates can be found on the ISIS++ web site at
htt~://www.ca.sandia. gov/isis/isis++ .html. An online annotated reference index of the ISIS++
v 1.0 interface is provided there, as well as information on obtaining, installing, and running
the package.

‘ The color coding in the overview figure is as follows: blue represents the central abstractions in ISIS++, dark
blue represents the implementations, dark mqynta (EBWCEBE, Domain Decomposition, and Adaptive
Methods) represents the implementations still in progress at the time of this writing, and dwk cyan (CGNE and
CGNR solvers) are specializations which interact with only a subset of the preconditioners.



9

2 Framework Overview
In this section we describe the ISIS++ framework, which is founded on the base classes

Solver, Preconditioned, Matrix, Vector, and LinearEquations. These classes constitute the
fundamental abstractions within ISIS++, and define the core interactions provided by the
framework. As will be shown, specializations of these abstractions are provided in order to
address the needs of certain methods (e.g., the SPAI preconditioned uses dynamic row resizing
features not provided in the Matrix base class).

After an overview of the ISIS++ framework, we describe the public interfaces for the
core and derived base classes. Additionally, we describe the public interfaces for the Map and
CommInfo auxiliary classes.

2.1 Central abstractions

The ISIS++ framework includes an integrated collection of C++ classes which are
designed for the scalable solution of large-scale, unstructured, sparse systems of linear of
equations on distributed memory parallel computers.

At the core of the ISIS++ framework are the abstract base classes: Solver,
Preconditioned, Matrix, Vector, and LinearEquations. These base classes are particularized to
yield specialized base classes as follows:

Solver + IterativeSolver
Preconditioned + RowPreconditioner
Matrix + RowMatrix.

The hierarchical representation of this class structure is shown in Figure 2. The core base
classes interact with each other through the functions defined in their public interfaces, and
represent generalizations of the primary functional and data units within the framework. In
essence, these classes and their immediate descendants define the basic framework, while the
implementations of the classes provide the data structures and solution methods.

Perhaps the most important role of the framework is to insulate the implementation
details of one base class from another. In this way, implementations can be added or modified
without requiring changes to associated (or indirectly related) classes. For example, adding a
new matrix class is simply a matter of mapping the data and functionality of the matrix object
into the Matrix (or derived matrix) base class. The solvers and preconditioners will
immediately (and without modification to source code) be able to utilize the new matrix class,
since it behaves according to the definition of the base class. In this way, it is a simple matter
to switch matrix and vector class implementations to run on uni-processor or multi-processor
computers. Thus, parallel matrix implementations can be selected according to those best
tuned for the platform.

.

‘ Uni-processor implementations are also supported.
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Figure 2. ISIS++ central abstractions.

2.2 Solver base classes

The Solver abstract base class’ is essentially a placeholder for the function solve. The
Solver class is the root for the lterativeSolver abstract base class. The Krylov methods
implemented in ISIS++ are all derived from the IterativeSolver base class. The solver base
classes share one important feature – they use generic representations of matrices and vectors
(i.e., they have as arguments the classes Matrix and Vector). Consequently, solver
implementations (such as the Krylov solvers derived from the IterativeSolver class) may
interact with any matrix and vector objects so long as they do not introduce specialized
requirements from the Matrix or Vector base classes.

In effect, the solver base classes are only relevant from the developer’s point of view,
since the user interacts with particularizations of the solver classes. Indeed, the solve function
itself is accessed via the LinearEquations class (see below). The annotated public interfaces
for the Solver and IterativeSolver base classes follow. The functions represented therein are
inherited by (and hence are available from) all of the Krylov subspace iterative methods
presented in section 3.

Solver class public interface

class Solver

// default constructor function
Solvero {);

// default destructor function
virtual -Solver ( ) ( } ;

// solve function
virtual int solve (const ~atrix& A, Vector& x,const Vector& b, F’reconditioner& pc) =0;

/ / to pass in parameters

virtual void parameters ( int numParams, char **~ar~StringS ) ‘O ;

4A C++ class containing one of more pure virtual functions is by definition an abstract base class. Pure virtual
functions mustbe implemented by derived classes, hence the notion of an abstractbase class. It is not possible to
instantiate an abstract base class object. Rather, derived objects must be instantiated. Ellis and Stroustrup [6].
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// to set amount of screen output

virtual void outputLevel(int level, int localRank, int masterRank) ;
.

Solver base class public interface reference notes:

. Theretum values forallsolve functions wecumently inte~reted as follows:
1 successful completion, normal convergence tolerance met.
o unsuccessful completion, failed to converge in maxi t erat i ons ( ).

-1 unsuccessful exit on stall condition.
-2 failed on memory allocation.

● The parameters function is to be implemented by each solver implementation. The
format of the arguments is the same as that used to access command line arguments in
general, and allows any number of any type of argument to be passed in. A simple
example of this is given in the Example Problem section at the end of this document.

. The outputLevel function determines the amount of screen output that will be
produced. The “level” parameter has the following effect:

o no screen output
1 master node prints out parameter values and residual norms
2 all nodes print out information. Intended for debugging purposes.

The localRank and masterRank arguments are logical processor numbers for the parallel
case; they can both take the value O for the serial case.

IterativeSolver class public interface

class IterativeSolver : public Solver

/ / default constructor function
IterativeSolver ( ) :

tolerance (l. Oe-13) , / / default convergence tolerance
rnaxIterations (1 OOC)), // default max iterations
maxStallCount (0) { } ; // disable stall check

/ / default destructor function
virtual -Iterativesolver ( ) { } ;

// solve function
virtual int solve (const Matrix& A, Vector& x, const Vector& b, preconditioner& pc) =

o;

// getlset convergence tolerance

double tolerance ();

void tolerance (double tol);

// get/set maximum number of iterations

int maxIterationso ;

void maxIterations(int maxIt) ;
.
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// get/set scaled residual 2-norm
double normalizedResidualo;
void normalizedResidual (double residual) ;

// getlset stall count

int maxStallCounto ;
void maxStallCount(int maxSC) ;

IterativeSolver base class public interface reference notes:

. Theretum values forthesolve function ~esimilm tothe Solver base class.

. Current implementations of the norrnalizedllesidual function use the2-norm of the
RHSvectorbto scale the residual vector.

. ThemaxStallCount functions areused tocontrol thestall checking algorithm within the
Krylov solvers. The stall checking algorithm looks for progress toward convergence
within maxSC iterations, and will terminate the iterations if a stall condition is observed.
Setting maxStallcount (0) disables the stall checking algorithm. By default, the stall
checking is disabled.

2.3 Preconditioned base classes

The Preconditioned abstract base class provides the fundamental interactions required by
K.glov subspace iterative solvers, fashioned after the development presented in Barrett, et al.
[2]. The basic interaction between solvers and preconditioners in ISIS-t-+ is discussed below.
It is worth noting the basic model adapted within ISIS++ before describing the Preconditioned
and RowPreconditioner base classes.

The basic mathematical problem can be defined as follows. Given the linear system of
equations:

Ax= b: AeW’x” ,x, b~%n, (2.1)

where sparse matrix A and RHS vector b are knowns, we seek to determine the solution vector
x within a predetermined accuracy. Consider a matrix M which approximates A in some
sense. If k?-] is relatively cheap to compute and if M-l A = 1 (or is otherwise significantly
better conditioned than A), then M can be considered an effective preconditioned. Assume a
splitting of the approximation matrix such that:

A41M2=M=A : M1, ik?2,it4~9inxn. (2.2)

Applying this to (2.1) gives

ki[’Akf;’~2x = Ml-’b : A G %nxn, X, b ● ~n , (2.3)

which can be viewed as

By=c : B= M; ’AM;’, y=ikf2X, c=lll-’b. (2.4)

5Solution strategiescan also use an initial guess of the solution vector x.
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Typically, either Ml = 1 or Mz =1, for right or left (one-sided) preconditioning, respectively.

However, the basic model (and interface) supports two-sided preconditioning. The solvers
form B, y, and c implicitly by applying the preconditioners through computational steps such
as:

solve for z from Ml z = d,

which is available from the preconditioned interface as member function solveMl (z,d ).

There are corresponding functions for M:, A42, and M;, as shown below.

The RowPreconditioner base class provides specializations for implementations which
require row-wise access to matrix values. As shown below, the Preconditioned and
RowPreconditioner public interfaces are nearly identical, with only minor modifications in the
constructor function to account for the use of RowMatrix objects. The primary difference in
the interfaces is the requirement that a RowMatrix object be referenced. This restriction
permits preconditioned implementations to access the row data within the reference matrix
(passed in the constructor). By inheritance, all of the public functions from the Preconditioned
class are available. The pure virtual functions shown for the RowPreconditioner class are
essentially “passed down” from the Preconditioned class to derived implementations.

Preconditioned class public interface

class Preconditioned

// default constructor function

Preconditioned (const Matrix& A) ;

// default destructor function

virtual -preconditioned () (};

II solver access functions

virtual void

virtual void

virtual void

virtual void

1/ calculate

virtual void

solveMl (Vector& y, const Vector& z) const = O;

solveMIT (Vector& y, const Vector& z) const = O;

solveM2 (Vector& y, const Vector& z) const . O;

solveM2T (Vector&

preconditioned

calculate = O;

y, const Vector& z) const = O;

// to pass in parameters

virtual void parameters (int numParams, char **paramStrings)=O;

// clear memory

virtual void emptyo = O;

// left and right modifiers and query functions
virtual void setDefaulto = O;

void setLefto;

void setRighto;
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bool isLefto const;

bool isRighto const;

Preconditioned base class public interface reference notes:

Given a preconditioning matrix M =A, matrices MI Mz=M, andvectors yandz, the .

solver access functions correspond to the following operations:

solveMl (y,z) + y = M,-’z

solveMIT (y,z) + y = M1-~z (where lkf-~ is the inverse of Ml transpose)

solveM2 (y,z) * y = M;]z

solveM2T (y,z) + y = M;Tz (where M;T is the inverse of M2 transpose).

The calculate function does any up-front computations for the preconditioned, and in
general needs to be issued prior to invoking preconditioned services from within the
solvers. For multi-step problems, the preconditioned results can be sub-cycled by calling
the calculate function less frequently than the Li.nearE~ations: : solve function.

The parameters function has the same functionality as the one in the Solver base class.

The empty function is designed to release memory (after the preconditioned has been
used) without deleting the preconditioned object. It is completely specific to the particular
preconditioned implementation.

The left and right modification and query functions allow the user to control the operation
of the preconditioned in those cases where it may be applied from either the left or right.
Generally, there is a preferred means of applying the preconditioned, and this is set by the
s etDef aul t function. By convention, the set Def aul t function is issued from within
the constructor functionf.

RowPreconditioner class public interface

class RowPreconditioner : public Preconditioned

// default constructor function

RowPreconditioner (const RowMatrix& A) ;

// default destructor function

virtual -RowPreconditioner () {};

// solver access functions

virtual void solveMl (Vector& y, const Vector& z) const = O;
virtual void solveMIT (Vector& y, const Vector& z) const = O;

virtual void solveM2 (Vector& y, const Vector& z) const = O;
virtual void solveM2T (Vector& y, const Vector& z) const = O;

‘ Strictly speaking, the interface does not guarantee the user that the setDefault functionwill be issued upon.
construction.
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// calculate preconditioned

virtual void calculate = O;

// to pass in parameters

virtual void parameters(int numParams, char **paramStrings)=O;

// clear memory

virtual void emptyo = O;

// left and right modifiers

virtual void setDefaulto = O;

RowPreconditioner base class public interface reference notes:

. The RowPreconditioner class behaves precisely like the Preconditioned class, but adds the
restriction that construction requires aRowMatrix object. This specialization permits the
added (data access) functionality of RowMatrix objects to be employed internal to
RowPreconditioner derived objects.

. The complete set ofleft andright modification and query functions are retained from
inheritance. The setDefault function is``passed througti' asapure vifiual function to
derived classes.

2.4 Auxiliary container classes

The Map and CommInfo classes are basic building blocks for sparse linear systems in
ISIS++ on distributed-memory computing systems. These two classes contain information
pefiaining to the decomposition of the problem data. In a distributed-memory setting, these
objects hold the partitioning and basic communications information. In the uni-processor
setting (see section 5), the matritivector objects default to the trivial case and are constructed
without need of partitioning information.

The Map base class is the primary container for partitioning information. Map class
derived objects contain CommInfo objects. Consequently, CommInfo services can be reached
via the Map class. The Map class contains a virtual representation of the matrix and vector
partitioning information. Specifically, any matrixhector can be thought of as corresponding
to a linear partitioning of rows and columns across processors. Thus, there is the notion of a
global matrix/vector addressing within the Map base class. Further, certain restrictions apply
to this global addressing scheme, including:

. Rows and columns are globally numbered from 1 ton.

● The terms startRow, endRow, and numLocalRows retain the relationship

numLocalRows = endRow - startRow i- 1

for all processors. The same relationship holds for the column equivalents.

Since this generalization is not suitable for all possible matrixhector implementations (i.e.,
more complex data distributions may be desirable or necessary), the Map class is meant to be
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expanded as needed for each new matrix/vector class implementation. That is, a derivative
Map class may be added for each new parallel matrixlvector implementation, depending on
how the partitioning information is stored native to the new implementation. The public -
interface shown below contains the constructors for the ISIS++ “native” matrixlvector class
implementations. The Map class specialization developed for the Aztec DMSR matrixhector .
implementation is presented in section 5.10.

The CommhZ@ class contains information pertaining to processor IDs and the number of
processors being used. This object exists trivially for the uni-processor case. For the parallel
case, it is a repository of the communication subsystem information and is constructed by the
end-user. CommInfo objects are referenced via Map objects which effectively own the
information.

Map class public interface

class Map

// default distributed-memory constructor function

Map (int n, int startRow, int endRow, int startCol, int endCol, const CommInfo&

conunInfo);

// default serial constructor function

Map(int n) ;

// copy constructor

Map (const Map& map) ;

// default destructor

virtual -Map () {);

/1 access functions

const CommInfo& getCorrunInfo() const;

int no const;

int startRow () const;

void startRow(int startRow) ;

int endRow( ) const;

void endRow (int endRow) ;

int numLocalRowso const;

int startColo const;

void startCol(int startCol) ;

int endColo const;

void endCol(int endCol) ;

int numLocalColso const;

// get

// get

// get

// set

// get

// set

// get

// get

// set

// get

// set

// get

CommInfo ref

characteristic size

local start row

local start row
local end row

local end row

local number of rows

local start column

local start column

local end column

local end column

local number of cols

Map class public interface reference notes:

● Thedefault distributed memo~constmctor requires theuser toprovide thetotal number
ofequationsn, the processor-local values for the partitioning parameters, and areference
to alocal CommInfo object. The distributed-memory constructor arguments are defined
as follows:
n global number of rows/cols (matrix must be square)
stm-tRow global index of lowest number row on local processor
endRow global index of highest number row on local processor
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startCol global index of lowest number column on local processor
endRow global index of highest number column on local processor.

. The default serial constructor requires the user to provide the total number of equations n.
The values of startRow and startCol are set equal to 1 and endRow and endCol to n upon
construction.

. The copy constructor is used to create a duplicate Map object, which may then be
independently modified.

. Both the Matrix and Vector base classes contain the function getMap which can be used
to retrieve a reference to a Map object.

. The getCommInf o function returns a reference to the CommInfo object associated with
the Map object. As an example, consider the following code snippet:

Map map(n) ; // construct a simple serial map

SCRS_Matrix A(map) ; // construct a serial CRS matrix

int size = A.getMapo no; // matrix size

// determine local processor rank

int myRank = A.getMap ().getCommInfo ().localRank( );

Commlnfo class public interface

class CommInfo

// distributed-memory constructor function

CommInfo(int numProcessors, int masterRank, int localRank);

// serial constructor function

CommInfoo ;

// default destructor function

virtual -CommInfoo {};

// access functions

int masterRanko const;

int localRanko const;

int numProcessorso const;

CommInfo class public interface reference notes:

. Forthedistributed-memo~ case, theprocessor IDmasterRank isusedprimmily for
output control. Native ISIS++ implementations usenode masterRank astheprim~
synchronization point for some global operations.

. The serial constructor sets masterRank and localRank to zero, and numProcessors to one.
While this is a trivial result, it permits the access functions to work interchangeably on
serial and parallel platforms.

. Communications information may be retrieved via the function Map: : getCommInfo,
which returns a reference to a CommInfo object.
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For example,

2.5

int n = 10; // 10 rows & cols

Map map(n); // construct serial map object

// query master processor rank

int masterRank = map.getCommInfoo .masterRanko;

Matrix base classes

The Matrix abstract base class represents the primary data structure within ISIS++, since
matrix operations and storage typically dominate CPU and memory requirements,
respectively. The Matrix class was designed tobe as simple and general as possible, while
providing the operations needed to support Krylov iterative solvers. Specializations of the
matrix classes in large part revolve around the storage format of the data, and consequently
the data access interface possibilities. Krylov solvers in general do not need to access the
matrix data, but rather the mathematical operations of matrices on vectors. In this sense, the
matrix data abstraction works ideally for solver/matrix interactions.

However, the same does not hold for preconditioned/matrix interactions. That is, some
preconditioners need to access matrix values, and in some cases (e.g., SPAI) construct matrix
objects internally. In these cases, a generalized data access interface (and underlying
implementation) is desirable to keep the abstraction “intact”. Unfortunately, this degree of
generality appears to be impractical for high-performance implementations due to the
overhead involved when the data does not naturally conform to the fully generalized access
requirements. For example, consider the case whereby a sparse matrix object is stored in CRS
(Compressed Row Storage) format (see Barrett et al.[2]), and a column of the matrix is
needed. One does not even need to consider the complicating factor of partitioning the matrix
across processors according to rows to realize that fetching a column of a CRS matrix is an
extremely inefficient operation. Consequently, specializations of the Matrix class are needed
to provide for efficient access to the internal data. As shown below, except for the ability to
access the matrix diagonal, there are no provisions for data access in the Matrix base class.
The data access specializations arise in the derived matrix classes.

The RowMatrix base class is derived from (and inherits the public interface of) the
Matrix base class, and requires further specialization before objects can be constructed. The
added access functions distinguish the RowMatrix class from the Matrix class. The common
(pure virtual) functions are essentially passed through to classes which are derived from the
RowMatrix class. A specialized set of direct pointer access functions is available for
implementations which can support it. In particular, each row’s data must be contiguous in
memory for pointer access to be viable. This is currently provided for four ISIS++ matrix
implementations, all derived from the RowMatrix class. A test function is provided for run-
time determination of the viable existence of the pointer access functions.

We now present the public interfaces for the Matrix and RowMatrix base classes.

Matrix class public interface

class Matrix
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// constructor function
Matrix(const Map& map);

// default destructor function
virtual -Matrixo {};

// mathematical functions

virtual void vectorMultiply(Vector& y, const Vector& x)const=O;

virtual void transposeVectorMultiply(Vector& y, const Vector& x) const . O;

// data access functions

virtual void getDiagonal (Vector& diagVector) const = O;

const Map& getMapo const;

// special functions

virtual void configure(const IntVector& rowCount) = O;

virtual void fillCompleteo = O;

virtual bool readFromYile(char *filename) . O;

virtual bool writeToFile(char *filename) const . O;

// query functions

bool isFilledo const;

bool isConfiguredo const;

// min/max functions

virtual bool rowMaxo const {return false;};

virtual bool rowMino const {return false;};

virtual double rowMax(int rowNumber) const (return -1.0;) ;

virtual double rowMin(int rowNumber) const (return –1.0;) ;

Matrix base class public interface reference notes:

. Upon construction the matrix object does not allocate thememory space forthe data.
Rather, the configure functionpassesthe vectorrowCount whichcontainsthe number
ofnon-zeros perrow. At that pointthememory for the matrix values and indices canbe
allocated. This isnotneededor even supported by all implementations, aswillbeseen
later.

● The use of the matrix-vector multiply functions are illustrated in the following code
snippet.

DCRS_Matrix A(map); // construct DCRS matrix A

Dist_Vector y(map); 1/ construct distributed vector y

Dist_Vector z(map); II construct distributed vector z

(initialize A and z)

A.vectorMultipy(y, z); // y=Az

A.transposeVectorMultiply (y,z); // y=ATZ

s The getDiagonal function loads the reference vector withthe matrix diagonal terms.
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●

●

●

●

●

●

●

●

The getMap function returns a reference to the associated
point for Map and (indirectly) CommInfo information.

Map object, and is the access

.

The configure function allocates memory for the storage of all necessary terms to
contain matrix data. Calling this function resets the internal state such that (for a given
matrix) subsequent calls to i .sConf igured will return true. It is not necessary to use the

.

configure function for all matrix implementations.

The f i 1 lcomplet e function provides a placeholder for handling the data consistency
checks as well as message-passing configuration information for the distributed-memory
case. This function must be invoked once all the user data is loaded into the matrix object,
and before computations are performed with it.

The readFromFi le and writ eToFi le functions read/write to a user-named ASCII file
in the Matrix Market exchange format.

The i sFi 1 led function is used to verify that the matrix object has been loaded with data
before attempting to mathematically operate on the matrix. When a matrix object is
constructed, or subsequent to calling the empty function, the matrix state is internally set
to not-filled. Only after calling f i 1 lcompl e te is the state reset to return true.

The i sConf igured function is used to query whether the matrix object has been
configured (i.e., the memory has been allocated).

The boolean rowMax and rowMin (query) functions indicate whether a valid
implementation of the associated functions exist for a particular matrix implementation.

New matrix implementations require development of the configure and
f i 1 lcomplet e functions, and potentially a new variant of the Map class.

RowMatrix class public interface

class RowMatrix : public Matrix

// constructor function

RowMatrix (const Map& map) ;

// default destructor function

virtual -RowMatrix( ) {);

// mathematical functions

virtual void vectorMult iply (Vector& y, const Vector& x)const=O;

virtual void transposeVec torMultiply (Vector& y, const Vector& x) const . O;

// special functions

virtual void configure (const IntVector& rowCount ) = O;

virtual void fillComplete () = O;

// data access functions ...
virtual void getDiagonal (Vector& diagVector) const = O;

virtual void getRowSum (Vector& rowSumVector) const = O;

virtual int rowLength (int row) const = O;
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// . . . to resize matrix rows (where applicable)

virtual bool setRowLength(int length, int rowNumber) (return false;);

// . . . to read matrix rows.

virtual void getRow(int row, int& length, double* coefs, int* colInd) const = O;

virtual void getRow(int row, intk length, double* coefs) const = O;

virtual void getRow(int row, intk length, int* colInd) const = O;

// . . . to write matrix rows.

virtual int putRow(int row, int cardinality, double* coefs, int* colInd) . O;

virtual int sumIntoRow(int row, int cardinality, double* coefs, int* colInd) . O;

// specialized direct pointer access functions ...

// ... test for pointer access viability

virtual bool pointerAccesso {return false;};

// ... read-write pointer access to matrix data

virtual double* getPointerToCoef (int& length, int rowNumber) . O;

virtual int’ getPointerToColIndex(int& length, int rowNumber) . O;

// ... read-only pointer access to matrix data

virtual const double* getPointerToCoef (int& length, int rowNumber) const=O;

virtual const int* getPointerToColIndex (int& length, int rowNumber) const.O;

RowMatrix base class public interface reference notes:

● Unless otherwise indicated, the RowMatrix functions are identical to the Matrix class
equivalents.

. The getRowsumfunction returns (via the argument list) avectorwhose elements arethe
sumofthe absolute values oftheentries of the corresponding rows.

● The rowLength function returns the number of (presumably non-zero) entries in the
specified row.

. The setRowLength functionis provided for allRowMatrixclass implementations, butis

only functional for those implementations which support dynamically resizing rows. For

the statically sized implementations, the function will return~alse. For thedynamically

sized implementations, the function will return true.

● Three variations ofthegetRow function are provided for reading matrix row data, each
guaranteed not to modify thematrix data. Depending on the argumentlist, data isloaded
into the buffers for the matrix coefficients and/orcolumnindices, andthe lengthof the
rowisreturned asanargument.

● The pointerAccess function7 provides aboolean test for the availability ofthe direct
pointer access functions, which only apply to implementations with rows stored in

. 7This approach was chosen over more elegant solutions, as it proved completely portable on all C++ compilers.
Dynamic casting would probably be preferable, but the compiler support was marginal at the time of this
development.
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contiguous memory.

For implementations which do not support pointer access, the pointerAccess function
returns @se and the getPointerToCoef and getPointerToCol Index functions
return pointer to NULL (i.e., zero value) and argument leng[h = -1. .

For implementations which do support pointer access, the functions getPointerToCoef
and get point erToCo 1 Index provide the means to directly access the matrix
coefficients and column indices, respectively. The cons t versions of these functions
provide read-only access to the data. The value of the return argument length is the
number of entries in the specified row.

2.6 Vector base classes

There are two fundamental vectors abstractions represented in ISIS++ v 1.0: real-valued
(double-precision) and integer-value (int) vectors. A further delineation can be made
regarding uni- or multi-processor implementations, but this is abstracted from the fundamental
representation. The current implementations available in ISIS++ are discussed in section 5.

The Vector class represents the real-valued vector abstraction and, like the Matrix class,
is designed to provide the operations necessary to support Krylov subspace iterative methods.
Since data access is so much simpler for vectors than matrices, efficient, generalized data
access can be provided. In this sense, the vector abstraction is superior to that of the matrix.

r

The IntVector class represents the integer-valued vector abstraction, and is similar to the
Vector class but with a more limited set of mathematical functions. Its primary use within the -
ISIS++ native implementations is as a container class for indices and cardinalities.

Vector base class public interface

class Vector

// default constructor function
Vector (const Map& map) ;

// default destructor function

virtual -Vector () {1;

// cloning constructor function

virtual Vector” newVector () const = O;

// mathematical functions

virtual

virtual

virtual

virtual

virtual

virtual

void addVec (double s, const Vector& y) . 0 ;

double dotProd(const Vector& y) const = O;

void linComb(const Vector& y, double S, const Vector& Z) = O;

double norm( ) const = O;

void put (double s) = O;

void scale (double s) = O;
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// assignment operator

Vector& operator=(const Vector& rhs);

// access functions

virtual double& operator[] (int index) = O;
.

virtual const double& operator[] (int index) const = O;

const Map& getMapo const;

Vector base class reference notes:

. The newvect or function is critical to the use of vector objects internally in other objects
(e.g., solvers and preconditioners). When objects use vectors as internal auto-variables,
the cloning facility permits the object to construct vectors from thepassed-in prototypeso
that they are ofsimilartype (and partitioning) as theprototype. This capability allows the
abstracted vector types to be used essentially anywhere inconsistent manner.

● Themathematical functions comespond tothefollowing operations, where xisthe
reference vector, y and z are vectors, ands is a scalar:

x.addVec(s, y) ; xi + xi + Syi vi

x.dotProd(y) ; return xvi XiYi

x.linComb(y, s, z); xi = yi +szi Vi

x.normo; return (Xvi X~)”2

X.put (s); Xi=s Vi

x. scale(s); xi = Sxi Vi.

. The operator= function sets the LHS vector equal to the RHS vector, such as:

X=y; xi = yi Vi.

. The operator [ ] functions provide read-only and read/write access to individual vector
elements. In general, these functions are slower than direct (pointer-based) data access.

. The getMap function returns a cons t reference to the map object used to construct the
vector object.

lntVector base class public interface

class IntVector

// default constructor function

IntVector(const Map& map) ;

// default destructor function

virtual -IntVector () {};

// cloning constructor function

virtual IntVector* newIntVector () const = O;
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// mathematical functions

virtual void put(int scalar) = O;

// operator= function
IntVector& operator=(const IntVector& rhs);

// access functions

virtual int& operator[] (int index) = O;

virtual const int& operator[] (int index) const = O;

const Map& getMapo const;

IntVectorbase class reference notes:

. The newvec t or function is similar in principle to that of the Vector class.

. The sole mathematical function is used for setting all vector elements to a scalar value.
This corresponds to the following operation, where x is a reference integer-valued vector
and sisan integer-valued scalar:
X.put(s); Xi=s Vi.

● The operator= function sets the LHSvectorequal to the RHS vector, such as:
X=y; xi =yi Vi.

. Theoperator[] functions provide read-only and read/writeaccesstoindividualvector

elements. lngeneral, these functions are slower than direct (pointer-based) data access.

. The getMapfunction returns aconst reference to the map objectusedto construct the
vector object.

2.7 LinearEquations class

The LinearEquations class binds the matrix, the solution vector, and RHS vector to form
a system of linear equations (denoted Ax = b). The LinearEquations object provides a point
of interaction to initiate and control the solution process, including setting the solver,
preconditioned, and scaling functions. Another role of the LinearEquations class is to check
for consistency with the associated matrix and vector objects. That is, the matrix and vector
types can be compared, and the partitioning can be checked via the Map object (used to
construct the matrix and vectors).

We now present the public interface for the LinearEquations class. It is worth noting
that unlike the Solver, Preconditioned, Matrix, and Vector base classes LinearEquations
objects may be directly constructed (i.e., without derivative implementations).

LinearEquations class

class LinearEquations

// constructor function

LinearEquations (Matrix& A, Vector& X, Vector& b) ;
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// default destructor function
virtual -LinearEquationso {};

.

// set preconditioned and solver functions

void setPreconditioner(Preconditioner& PC) ;

void setSolver(Solver& solver) ;

[/ invoke solution process

void solveo;

// scaling functions

bool rowscaleo;

bool colscaleo;

LinearEquations class reference notes:

. The setpreconditioner and setSolver functions setinternal pointersto

Preconditioned and Solver objects, respectively. The pointers are subsequently used in the

solve function.

. The rowscale and colscale functions invoke row andcolumn scalingon thereference
system Ax=b. These operate through related matrix and vector scaling services, and
retum~alsewhenscalingis not supported orotherwisemue. Allrows/columnsarescaled
according to the maximum absolute value over the corresponding row orcolumn. Hence,
themaximum value inarow/columnis 1 immediately following row/column scaling.

3 Solver Implementations
The solvers currently implemented in ISIS++

For mathematical background on Krylov methods
are all Krylov subspace iterative methods.
for linear systems, we refer the reader to

Barrett et al. [2], Freund, Golub and ‘Nachtigal [9], Meier-Yang [15] and Tong [20], to name
just a few of the many works that exist in this field. In this section we briefly describe the
solvers included in the ISIS++ v 1.0 framework.

All solver implementations are derived from the IterativeSolver base class, and inherit
its public interface (see section 2.2). Consequently, the primary interaction with these solvers
is defined by the IterativeSolver public interface. Here we present the functions particular to
each of the methods. We have omitted the pure virtual function solve, which is common to
all the solvers and is identical to that of the IterativeSolver class.

In some of the algorithm descriptions that follow, we refer to the initial residual, and the
Krylov subspace corresponding to the initial residual. The initial residual is denoted by
r(o) = b– Ax(o), where A ~ ~“n is the coefficient matrix, b G W is the right-hand-side
vector, and x(o) e ~“ is the initial guess of the solution vector supplied by the user. The
Krylov subspace of dimension m corresponding to the initial residual is defined as

. K~l(A, r(0)) = span{ r(0), Ar(0), A2r(0),...,lr(0) }r(0)} .
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3.1 QMR

The QMR (Quasi-Minimal Residual) algorithm, introduced by Freund and Nachtigal -
[10], is based on the non-symmetric Lanczos process. It consists of constructing a bi-
orthogonal pair of vector sequences, which are the Krylov subspace vectors for the matrix A
and for the transpose of A. Several variants of QMR have been developed which add look- -
ahead techniques to avoid numerical break downs, and which use two- or three-term
recursions to construct the vector iterates. Transpose-free variants have also been developed
(see Freund [8]), in order to avoid the need to calculate a transpose matrix-vector product
since some sparse matrix implementations don’ t provide that capability. The implementations
currently in ISIS++, however, use the transpose product, and employ coupled two-term
recurrences without look ahead.

The QMR algorithm may be applied to general linear systems; it requires neither
symmetry nor positive-definiteness of the coefficient matrix. The major computational
components of this algorithm are the two matrix-vector products (one of them a transpose),
some vector updates and two vector dot products per iteration. In terms of memory
requirements, it uses about 15 internal vectors in addition to the matrix and two vectors that
are passed in from the calling program. No special control parameters are used for the QMR
algorithm. Hence the constructor and destructor functions are all that are required from the
user’s point of view.

At present, there are two variants of QMR implemented in ISIS++. The QMR_Solver
class is based on Freund and Nachtigal [10]. The QMR2_Solver is a variant by Buecker and
Sauren [3] which reduces the number of global synchronization points to improve scalability.
Our experience indicates that QMR is slightly more numerically stable than QMR2. We are
investigating the addition of look-ahead mechanisms.

QMR_Solver class public interface

class QMR_Solver : public IterativeSolver

II constructor function

QMR_Solver ();

// destructor function
virtual -QMR_Solver () (};

QMR2_Solver class public interface

class QMR2_Solver : public IterativeSolver

// constructor function

QMR2_Solver ();

// destructor function
virtual -QMR2_Solver () {};
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3.2 GMRES(m)

The Generalized Minimum Residual (GMRES) algorithm was introduced by Saad and
Schultz [18]. It is based on the Arnoldi algorithm for reducing a general matrix to upper
Hessenberg form. Basically, the Hessenberg matrix is a restriction of the coefficient matrix A
onto the Krylov subspace corresponding to the initial residual. The approximate solution is
obtained by minimizing the residual on the Krylov subspace and then projecting it back onto
the space corresponding to A using the basis vectors that were produced by the Arnoldi
process. This requires that all basis vectors be stored, so that the memory requirements
increase linearly with the iteration count. The computational cost per iteration also increases
linearly, since each new basis vector must be orthogonalized against all previous ones. In
order to avoid prohibitive memory and computational costs, the algorithm is restarted
periodically, at which point the dimension of the Krylov subspace is reset to 1 and the
approximate solution is used for the initial guess in the next cycle. The optimal number of
iterations to perform between restarts is problem-dependent, and it represents a compromise
between memory and computational costs, and rate of convergence. In general, a smaller
restart value causes poorer convergence behavior, and can in fact lead to a stall situation in
some cases.

GMRES(m) can be applied to general linear systems, requiring neither symmetry nor
positive definiteness. The restart value (m) is the only special control parameter used for the
GMRES(VZ) algorithm. Functions are provided to query and set the restart value, which is by
default set to 100 upon construction.

GMRES_Solver class public interface

class GMRES_Solver : public IterativeSolver

// constructor function

GMRES_Solver (int m) ;

// destructor function

virtual -GMRES_Solver () (};

/1 restart interval

int mo const; // get restart interval
void m(int m) ; // set restart interval

3.3 FGMRES(/n)

The FGMRES algorithm is a Krylov subspace method which is described in detail in Y.
Saad [17]. It is a right-preconditioned version of GMRES, which allows the preconditioned to
vary at each iteration. For example, other iterative solvers can be used as preconditioners. At
this time, preconditioners are being constructed for ISIS++ that will exploit this capability.

FGMRES_Solver class public interface

. class FGMRES_Solver : public IterativeSolver
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// constructor function

FGMRES_Solver(int m);

// destructor function
virtual -FGMREs_solvero (};

// restart interval

int mo const; // get restart interval

void m(int m) : If set restart interval

3.4 DefGMRES(m)

DefGMRES(m) (Deflated GMRES(m)) is amodification of GMRES(m), basedon an
algorithm introduced byErhel etal. [7]. When GMRESis restarted, the Krylovsubspace that
has been constructed is discarded. Contained in the Krylov subspace, is information about the
extremal eigenvalues and eigenvectors of the coefficient matrix A, which are important to the
convergence of the algorithm. Discarding this information is the reason why restarting harms
the convergence of GMRES. The idea of Erhel et al. is to save some of this eigenvalue and
eigenvector information (through deflation) and then apply it as a preconditioned after the
restart, thus enhancing the convergence of the restarted algorithm. The implementation used
in ISIS++ is a variant of the above idea, whereby the information saved by deflation is applied
in addition to any arbitrarily chosen preconditioned passed in by the user. Our experience
indicates that DefGMRES(m) can provide significant performance gains for many problemss.

DefGMRES(rn) has the same applicability as ordinary GMRES(m), requiring neither
symmetry nor positive definiteness. However, the benefits provided by the deflation strategy
will vary from case to case. The restart value (m) is the only special control parameter used
for the deflated GMRES(m) algorithm. Functions are provided to query and set the restart
value, which is by default set to 100 upon construction.

DefGMRES_Solver class public interface

class DefGMRES_Solver : public IterativeSolver

// constructor function

DefGMRES_Solver (int m) ;

// destructor function
virtual -DefGMRES_Solver () {);

I/ restart interval

int mo const; // get restart interval

void m(int m) ; // set restart interval

3.5 BiCGStab

The Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm is another Lanczos-based
algorithm, which is closely related to the Conjugate Gradient (CG) algorithm. It produces two

UConsidering both qualitative convergence and wall-clock time.
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mutually orthogonal vector sequences. For more detail regarding this algorithm see Barrett et
al. [2].

BiCGStab maybe applied to general linear systems, and has a computational cost of two
matrix-vector products and four inner products per iteration. No special control parameters
are used for the BiCGStab algorithm. Hence the constructor and destructor functions are all
that are required from the user’s point of view.

BiCGStab_Solver class public interface

class BiCGStab_Solver : public IterativeSolver

// constructor function

BiCGStab_Solver ();

// destructor function

virtual -BiCGStab_Solver () {};

3.6 CGS

The Conjugate Gradient Squared (CGS) algorithm was described by Sonneveld [19]. It
is applicable to non-symmetric linear systems, but has highly irregular convergence behavior.
Barrett et al. [2] state that it tends to diverge when the initial guess is close to the solution.

No special control parameters are used for the CGS algorithm. Hence the constructor
and destructor functions are all that are required from the user’s point of view.

. CGS_Solver class public interface

class CGS_Solver : public IterativeSolver

// constructor function

CGS_Solver (int m) ;

// destructor function

virtual -CGS_Solver () {};

3.7 CG

The Conjugate Gradient (CG) algorithm, due to Hestenes and Stiefel [1 1], is the oldest
and most well known of the Krylov subspace methods for linear systems. Like all of the other
Krylov methods, it constructs the approximate solution vector as a linear combination of the
orthogonal basis vectors for the Krylov subspace generated from the initial residual. It is
closely related to the Lanczos method for symmetric matrices.

The CG algorithm is only guaranteed to converge for linear systems with symmetric,
positive definite (SPD) matrices (though this sufficiency condition for convergence is useful
only in the theoretical setting where round-off error is absent: hence this guarantee is of
limited utility in practice, as ill-conditioned matrices may result in extremely slow
convergence rates in the absence of an effective preconditioned). Computationally, it requires
one matrix-vector product and two vector inner products per iteration. Due to its reduced
operation count, it is an excellent choice when the linear system is SPD. No special control
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parameters are used for the CG algorithm. Hence the constructor and destructor functions are
all that are required from the user’s point of view.

CG_Solver class public interface
.

class CG_Solver : public IterativeSolver

// constructor function

CG_Solver ();

// destructor function

virtual -CG_Solvero {};

3.8 CGNE

Conjugate Gradients on the Normal equations to minimize the Error (CGNE) is a simple
variant of CG which allows the solution of systems with non-symmetric matrices (see Barrett
et al. [2], Kelly [14] and Nachtigal, Reddy and Trefethen [16], among others). The idea is to

apply the method of conjugate gradients to the linear system AA~y = b, and then set x = AT y

to obtain the solution to the original system Ax= b. The disadvantage of this approach is that

the condition number of AAT is the square of that of A.

CGNE may be applied to non-symmetric linear systems, and requires a transpose
matrix-vector product in addition to the work performed by ordinary CG at each iteration. No ..

special control parameters are used for the CGNE algorithm. Hence the constructor and
destructor functions are all that are required from the user’s point of view.

The CGNE solver requires specialized preconditioned implementations. The valid
.

preconditioners have prefix “CGNE_”. Since the resulting system is SPD, a few specialized
preconditioners are generally sufficient. We have implemented the polynomial and Block
Jacobi preconditioning methods for use with CGNE.

CGNE_Solver class public interface

class CGNE_Solver : public IterativeSolver

// constructor function

cGNE_Solver ();

// destructor function

virtual -CGNE_Solver () {};

3.9 CGNR

Conjugate Gradients on the Normal equations to minimize the Residual (CGNR) is
another variant of CG which allows the solution of systems with non-symmetric matrices (see
Barrett et al. [2], Kelley [14] and Nachtigal, Reddy and Trefethen [16], among others). It is
similar in principle to CGNE, with the idea being to apply the method of conjugate gradients
to the linear system A TAx = ATb. The resulting solution vector is in principle identical to the
solution of Ax= b. This approach is also affected by the fact that the condition number of
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AA~ is the square of that of A. See Kelley [14] for an explanation of the theoretical
difference between CGNE and CGNR..

CGNR may be applied to non-symmetric linear systems, and requires a transpose
matrix-vector product in addition to the work performed by ordinary CG at each iteration. No.
special control parameters are used for the CGNR algorithm. Hence the constructor and
destructor functions are all that are required from the user’s point of view.

CGNR_Solver class public interface

class CGNR_Solver : public IterativeSolver

// constructor function

CGNR_Solver ();

// destructor function

virtual -CGNR_Solver () {};

4 Preconditioned Implementations

The current implementation of ISIS++ includes a collection of preconditioned
implementations, all derived from either the Preconditioned or RowPrecontioner base class.
The basic preconditioning model used in ISIS++ is described in section 2.3. For brevity, we
have omitted the interface components common to the base class in the implementation
specifications that follow. Detailed descriptions of the preconditioned base classes can be

. found in section 2.3.

We now present the public interfaces for the preconditioners currently implemented in
ISIS++.

4.1 Identity

The identity preconditioned is provided in ISIS++ to establish a base line for un-
preconditioned systems. The identity preconditioned is essentially a non-operation, whereby
the solution vector from the preconditioned “solve” functions simply returns the passed vector.
There are no special parameters associated with the identity preconditioned, so the public
interface simply provides constructor and destructor functions, as follows.

ldentity_PC class public interface

class Identity_PC : public Preconditioned

// constructor function

Identity_PC (const Matrix& A) ;

// destructor function

virtual -Identity_PC () {);

.
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4.2 Diagonal scaling

Diagonal scaling can be viewed as the simplest of the incomplete factorization schemes e
applied to the matrix A to form an approximation to A-’ . The diagonal scaling (Point
Jacobi) preconditioned takes the form given by:

.

where ati = (i, j) element of the matrix A, and mti = (i, j) element of the (diagonal)
preconditioning matrix M. Since multiplication on the left by a diagonal matrix merely
scales the corresponding rows of the coefficient matrix, the preconditioned coefficient matrix
A takes the simple form:

There are many practical advantages to this diagonal scaling scheme, and this simple
method works remarkably well on many problems. Among its chief useful characteristics are
that it is very simple and hence readily implemented, and that it converts all of the diagonal
elements to the same sign. This latter feature is helpful when dealing with matrices that have
elements of both signs on the diagonal, such as those arising from mixed finite-element ●

analyses involving required implementations of constraint relations (at least, those mixed
analyses not characterized by zero diagonal matrix elements, in accordance with the caveats
given below). In addition, if the matrix is sparse and stored in a row-oriented format, then this
approach is easy to implement and fast to compute, as the diagonal scaling is applied row-
wise.

Unfortunately, there is a practical problem that commonly occurs with Point Jacobi
schemes, in that a zero on the diagonal causes numerical difficulties that add complexity to
this otherwise simple preconditioning scheme. This pathological case is representative of a
general problem where relying only on the diagonal entry for scaling information provides
insufficient information to construct a good preconditioned. We have currently implemented a
heuristic in ISIS++ that sets a zero diagonal to one for the purposes of the diagonal Jacobi
preconditioned.

The row scaling operation is closely related to the diagonal preconditioned, whereby the
maximum absolute value on each row is used instead of the element on the diagonal.

Diagonal_PC class public interface

class Diagonal_PC : public Preconditioned

// constructor function
Diagonal_PC (const Matrix& A) ;
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// destructor function

virtual -Diagonal_PC() {];

4.3 Block Jacobi

Block Jacobi preconditioning is a generalization of the Point Jacobi or diagonal scaling
scheme. Block Jacobi creates a block diagonal preconditioning matrix, whose blocks

correspond to the coefficient matrix A. Inverting these blocks gives MI-l, where the right-

preconditioning matrix M2 =1. The implementation in ISIS++ currently supports two

blocking strategies, namely, allowing the blocks to overlap or not. Interface functions are
supplied to allow the user to set and query the block size as well as the blocking strategy.

Non-overlapping or overlapping blocking is controlled by setting strategy equal to 1 or
2, respectively, with the blockSt rat egy set function.

BlockJacobi_PC class public interface

class BlockJacobi_PC : public RowPreconditioner

// constructor function

BlockJacobi_PC (const RowMatrix& A) ;

// destructor function
virtual -BlockJacobi PC () {);

// control/access functions

int blockSizeo ; // get block size

void blockSize(int size) ; // set block size

int blockStrategyo; // get blocking strategy

void blockStrategy(int strategy) ; // set blocking strategy

4.4 Block LU

The Block LUpreconditioner uses the SuperLU factorization package of Demmelet al.
[4],[5] toinvert exactly thediagonal blocks of ablock-wise distributed matrix. In the case
where asingle processor is being used, this preconditioned isinfact a direct solver. Naturally
its performance (in terms of convergence) on a given problem deteriorates rapidly as the
number of processors is increased, since there is a corresponding decrease in the size of the
diagonal blocks that are being inverted and used to approximate the matrix inverse.
Obviously the diagonal blocks must be non-singular (this is not always the case in practice).

Memory overheads are severe for this preconditioned. Since it performs a full exact
factorization, there is a lot of fill-in for the factors L and U that are produced and stored
internally. A set of ILU preconditioners have been added to ISIS++, but are not officially
supported at time of this writing.

Currently, the Block LU preconditioned only works with the BDCRS (see description in
the implementation section) matrix class.
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BLU_PC class public interface

class BLU_PC : public Preconditioned

// constructor function

BLU_PC(const BDCRS_Matrix& A);

II destructor function

virtual -BLU_PC() ();

4.5 Polynomial

In general, a polynomial preconditioned approximates the inverse of the matrix A by

constructing a matrix M~l=Pfl(A), a polynomial in A. The polynomial preconditioned

currently implemented in ISIS++ provides two choices for the type of the polynomial:
Neumann and Least Squares. The polynomial type and order can beset and queried by the
user through public interface functions.

ISIS++ currently supports polynomial orders upto10. Polynomial type iscontrolledby
setting type to 1 or 2 for Neumann or least squares, respectively, with the polyType set
function.

Poly_PC class public interface

class Poly_PC : public Preconditioned

// constructor function

Poly_PC(const Matrix& A, Vector& sample);

/1 composed preconditioning constructor function

Poly_PC(const Matrix& A, Vector& sample, Preconditioner& PC1);

// destructor function
virtual -Poly_PC() (};

// control/access functions
int polyordero ; // get the polynomial order
void polyOrder(int order) ; // set the polynomial order
int polyTypeo ; // get the polynomial type
void polyType(int type); // set the polynomial type

4.6 SPAI

The SPAI (SParse Approximate Inverse) preconditioneris an incomplete factorization
method which explicitly calculates and stores the approximate inverse matrix. It uses an
algorithm that isdue toGrote and Huckle [12] and was implemented by Barnard (see Barnard
and Clay [l]). It has a lengthy calculation phase, but it is fully parallel and produces dramatic
improvements in convergence for most problems. Unlike the Block LUscheme, itdoesn’t
restrict its attention to the diagonal blocks ofthe matrix. Thus, the convergence performance
does notdegrade when using many processors.

SPAIhas several control parameters which are setand queried by interface functions. Its
public interface is given below.
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SPAl_PC class public interface

class SPAI_PC : public RowPreconditioner

// constructor function

SPAI_PC(const RowMatrix& A);

// destructor function

virtual -SPAI_PC() {};

//functions for setting/querying parameters

double spai_epsilono const;

void spai_epsilon(double epsilon);

int spai_nbstepso const;

void spai_nbsteps(int nbsteps) ;

int spai_maxapio const;

void spai_maxapi(int maxapi) ;

int spai_maxnewo const;

void spai_maxnew(int maxnew) ;

int spai_maxo const;

void spai_max(int max) ;

int spai_cache_sizeo const;

void spai_cache_size (int cache_size) ;

int spai_infoo const;

void spai_info(int info) ;

// get epsilon

// set epsilon

// get number of steps

// set number of steps

// get maxapi

// set maxapi

// get maxnew

// set maxnew

// get max

// set max

// get cache size

// set cache size

// get info

// set info

Notes on SPAI_PC parametercontrol functions:

. The term epsikmi sa convergence tolerance relating to the Froebenius norm, influencing
the accuracy of the approximate inverse in a trade-off with memory requirements and
calculation speed. A smaller value of epsilon implies a more accurate approximate
inverse.

. The termnbsteps isthemaximum number of’’improvement’’ steps percolumn.

. The term maxapi is the maximum number of non-zeros in a row or column of the
preconditioning matrix M.

. The termmaxnewis themaximum number ofnewentriesper’’improvement” step.

. The termmax is the maximum dimension ofthe QRsubproblems.

. The term cache_size is used tocontrol Iocal rowcaching. The values have the following
mapping:
o- 101
1-503
2-2503
3- 12503
4-62501.

.
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●

5

Values of 3 or 4 are recommended as a starting point, although the optimal values are
problem dependent.

The term injo is used to control output specific to the SPAI algorithm. Setting injio to O
will disable SPAI output, while setting it to 1 will enable output.

*

Matrix/Vector Implementations
ISIS++ was designed for scalable, distributed-memory computations. However, some

people are also interested in running in serial mode, particularly on platforms which do not
support the MPI message-passing library. In response to this need, we have implemented
mirror image serial versions of the statically and dynamically sized native ISIS++ matrix
classes.

The static-size implementations are generally faster, since they have more latitude as
regards the underlying data structures, and hence can be more fully optimized for
performance. The resizable matrix classes are based on storing and processing one row at a
time, where each row’s data is stored in contiguous memory. Rows are however, not
necessarily contiguous with each other, and hence the resizable matrix is effectively a
collection of rows, each of which may be resized.

What follows is a description of the matrixhector implementations currently in ISIS++.
Most matrix implementations are variations on the standard CRS (Compressed Row Storage)
sparse matrix format, delineated by serial/distributed-memory data and static/dynamic sizing
properties, blocked data distribution, etc. An exception to this is the Aztec [13] DMSR
matrixhector class. For each matrix class we give an annotated header showing the functions
provided by that class. In general though, we omit the interface components common to the
base matrix class from which the class is derived. The “native” vector implementations
(Seq_Vector and Dist_Vector) can be used with multiple matrix implementations, with only
the AztecDMSR matrix class requiring its own vector class.

5.1 Sequential vector classes

The native sequential vector class implementation Seq_Vector is a direct
implementation of the Vector base class (see section 2.6), with an added copy constructor.
The default is to use the Fortran BLAS routines for the internal computations. An alternate
version which doesn’ t rely on this library is also available.

Similarly, the Seq_IntVector class is a direct implementation of the IntVector class,
specialized for a serial computing model and with a copy constructor. Both of the serial
vector classes are designed to inter-operate efficiently with the native serial matrix
implementations (i.e., SCRS_Matrix and RsSCRS_Matrix classes). In both vector classes, the
copy constructor creates an exact clone of the original vector.

Seq_Vector class public interface

class Seq_Vector: public Vector
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// default constructor function

Seq_Vector(const Map& map);

// copy constructor function

Seq_Vector(const Seq_Vector& source);

// default destructor function

virtual -SelVectoro {);

Seq_lntVector class public interface

class Seq_IntVector: public IntVector

// default constructor function

Seq_IntVector (const Map& map) ;

// copy constructor function

Seq_IntVector (const Seq_IntVector& source);

// default destructor function

virtual -Seq_IntVector () {);

5.2 Sequential static-size matrix class

The SCRS_Matrix matrix class is a CRS (Barrett et al. [2]) row matrix abstraction
specialized for serial computing. That is, the underlying model for the implementation isuni-
processor, global memory. The primary advantages inherent with this specialization include
performance and simplicity related to replacing MPI-based message passing with a global-
memory model. Further, the data is contiguous in memory to fully support the direct pointer
access functions.

Unless otherwise shown, the RowMatrix public interface is replicated within the
SCRS_Matrix class. The reader is referred tosection 2.5 for the complete specification of the
RowMatrix base class public interface.

As with all the native matrix implementations, the Map object is based on a virtual
global coefficient mapping numbered from lton, the characteristic size of the system. The
simple Map constructor map (n) is designed for the serial case.

The configure function must be called to allocate memory before anydata canbe

loaded into thematrix.

The function setRowLength returns~alse, since dynamic rowresizing is nonsupported

for this implementation.

SCRS_Matrix class public interface

class SCRS_Matrix : public RowMatrix

// constructor function
SCRS_Matrix(const Map& map) ;

// destructor function

virtual -SCRS_Matrixo {};
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// direct pointer data access functions
bool pointerAccesso {return true;};

...

5.3 Sequential re-sizable matrix class

The RsSCRS_Matrix re-sizable matrix class is a CRS (Barrett et al.[2]) row matrix -
abstraction specialized for serial computing. It essentially duplicates the functionality of the
static equivalent (see preceding), but fully enables the function setRowLength. The direct
pointer access functions are fully supported.

While the two serial matrix classes share near-identical functionality, we note that each
are completely different implementations. In particular, the SCRS_Matrix implementation
uses one contiguous block of memory for the matrix values and similarly for the column
indices. This data/memory configuration is extremely inefficient for row resizing, to the
extent that we make no attempt to support it. In order to support dynamic row resizing, the
RsSCRS_Matrix effectively treats a matrix as a collection of rows, each of which is
contiguous in memory but may be disjoint from other rows. As a consequence of this
data/memory layout, each row may be resized without affecting other rows, and hence is
relatively efficient for row resizing operations. Furthermore, there is no need to pre-configure
the matrix before loading data into it. Coefficients may be inserted using the putRow
function, and the appropriate rows will be adjusted as necessary.

RsSCRS_Matrix class public interface

class RsSCRS_Matrix : public RowMatrix

// constructor function

RsSCRS_Matrix (const Map& map) ;

// destructor function
virtual -RsSCRS_Matrix () {);

// set row length -- fully implemented, return value = true

virtual bool setRowLength (int length, int rowNumber) ;

// direct pointer data access functions

bool pointerAccess () {return true;};

5.4 Distributed-memory vector classes

The “native” distributed-memory vector class implementation Dist_Vector is a direct
implementation of the Vector base class (see section 2.6), with an added copy constructor. As
with all the distributed-memory components in ISIS++, the MPI message-passing library is
used for communications. The default is to use the Fortran BLAS routines for the internal
computations. An alternate version which doesn’t rely on that library is also available.

Similarly, the Dist_IntVector class is a direct implementation of the IntVector class,
specialized for a distributed-memory computing model and with a copy constructor. Both of
the distributed-memory vector classes are designed to inter-operate efficiently with the native
distributed-memory matrix implementations (i.e., DCRS_Matrix and RsDCRS_Matrix
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classes). In both vector classes, the copy constructor creates an exact clone of the original
vector.

Dist_Vector class public interface

class Dist_Vector: public Vector

// default constructor function

Dist_Vector(const Map& map) ;

// copy constructor function

Dist_Vector(const Dist_Vector& source) ;

// default destructor function

virtual -Dist_Vectoro (};

Dist lntVector class Public interface

class Dist_IntVector: public IntVector

// default constructor function

Dist_IntVector (const Map& map) ;

// copy constructor function

Dist_IntVector (const Dist_IntVector& source) ;

// default destructor function
virtual -Dist_IntVector () {};

5.5 Distributed-memory static-size matrix class.
The DCRS_Matrix matrix class is a CRS (Barrett et al. [2]) row matrix abstraction

specialized for distributed-memory computing, utilizing theMPI message-passing library for
communications. The matrix data is in contiguous memory to fully support the direct pointer
access functions.

As with allthe``native' 'matrix implementations, the map object is based on a virtual
global equation mapping numbered from 1 ton, the characteristic size of the system. The
parallel Map constructor (see section 2.4) is designed for this case. As with the sequential
static-size matrix class, memory must be pre-allocated by calling the configure function
before anydatamay beloaded.

The function setRowLength retums~alse, since dynamic rowresizing is nonsupported

for this implementation.

DCRS_Matrix class public interface

class DCRS_Matrix : public RowMatrix

// constructor function
DCRS_Matrix(const Map& map);

// destructor function

virtual -DCRS_Matrixo {};
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If direct pointer data access functions

bool pointerAccesso {return true;);

5.6 Distributed-memory re-sizable matrix class

The RsDCRS_Matrix re-sizable matrix class is amirror image of the RsSCRS_Matrix -
class, but specialized for distributed-memory computing, utilizing the MPI message-passing
library for communications. The RsDCRS_Matrix class essentially duplicates the
functionality of the static equivalent (see preceding), but fully enables the function
setRowLength. The direct pointer access functions are fully supported. Also, it is not
necessary to pre-allocate memory for this matrix by calling the configure function.

While the two “native” distributed-memory matrix classes share near-identical
functionality, each are completely different implementations. In particular, the DCRS_Matrix
implementation uses one contiguous block of memory for the “local” matrix values and
similarly for the column indices. In order to support row resizing, the RsDCRS_Matrix
effectively treats a matrix (or sub-matrix when partitioned row-wise) as a collection of rows,
each of which is contiguous in memory but may be disjoint from other rows. As a

consequence of this data/memory layout, each row may be resized relatively efficiently
without affecting other rows.

RsDCRS_Matrix class public interface

class RsDCRS_Matrix : public RowMatrix

// constructor function

RsDCRS_Matrix (const Map& map) ;

// destructor function
virtual -RsDCRS_Matrix( ) {};

// set row length -- fully implemented, return value = true

virtual bool setRowLength (int length, int rowNumber) ;

// direct pointer data access functions

bool pointerAccess () (return true;};

5.7 Block DCRS matrix class

The BDCRS_Matrix class is intended primarily for the multiple processor case, and
distributes the matrix data block-wise in 2 dimensions so that the global matrix consists of p
x p (where p is the number of processors) sub-matrices. Each processor owns a row of sub-
matrices. This implementation is not derived from the RowMatrix base class, but rather from
the Matrix base class. While there is no provision for getting a pointer to a row, it is possible
to get a pointer to a sub-block which is itself a CRS_Matrix object. The CRS_Matrix class,
which will be described in the next section, provides many of the capabilities of the sequential
CRS matrix classes described earlier.

The BDCRS_Matrix class can not be pre-configured. It is loaded with data using the
putRow function, which temporarily stores the data in re-sizable sub-blocks. When all of the
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data has been loaded (and the f i 1 lcomplet e function is called), it is transferred into static
size CRS_Matrix blocks. A form of direct pointer access to the data is available by first
getting a pointer to a sub-block of the matrix, and then getting a pointer to that block’s
coefficients.

.

BDCRS Matrix class public interface

class BDCRS_Matrix : public Matrix

// constructor function

BDCRS_Matrix (const Map& map) ;

// destructor function

virtual -BDCRS_Matrixo ;

// initialization function

void put(double s);

//access functions

virtual void getDiagona~ (VectorL diagllector);

void putRow(int row, int length, double *coef, int *colInd) ;

// direct sub-block access function

CRS_Matrix* getBlockPtr(int blockNumber);

5.8 CRS and RsCRS matrix classes

The CRS_Matrix and RsCRS_Matrix classes are essentially stripped-down versions of
the previously described SCRS and RsSCRS matrix classes. They are not part of the
Matrix/RowMatrix hierarchy, require no map at instantiation, and are purely sequential. They
were specially created for use as sub-blocks of the BDCRS format (which was described in
the previous section). Their functionality mirrors that of the SCRS and RsSCRS matrices,
with the main difference lying in the constructor functions. The other difference, in the case
of the CRS_Matrix class, is that the getPointerToCoef and getPointerToColIndex
functions are overloaded to simply return pointers to the beginning of the data block as well as
to a particular row.

The CRS_Matrix class also has a specialized function copyTocCS which copies its
contents into a CCS_Matrix object.

We now give annotated partial headers for these two classes, showing only those
functions which differ from the SCRS and RsSCRS matrix classes, respectively. All other
functions are identical.

CRS_Matrix class public interface

class CRS_Matrix

// constructor function

CRS_Matrix(int rows, int COIS, int nnz) ;
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// access functions

double* getPointerToCoef (int& nnz);

int* getPointerToColIndex(int& nnz);

// conversion to CCS storage

void copyToCCS (CCS_Matrix **B) ;

I/inquiry functions

int rowso;

int columrso ;

int nonZeroso ;

RsCRS_Matrixclass public interface

class RsCRS_Matrix

// constructor function

RsCRS_Matrix(int rows, int COIS);

// access functions

double’ getPointerToCoef (int& nnz);

int* getPointerToColIndex(intk nnz} ;

//inquiry functions

int rowso ;

int columnso ;

int nonZeroso;

5.9 CCS matrix class

The CCS (Compressed Column Storage) matrix is a column-oriented equivalent to the
CRSmatrix described above. It is also intended foruseas alocal sub-block ofa block-wise
distributed matrix. It was created for use inside the Block LU preconditioned, since the
internal algorithm in Block LU requires acolumn-oriented matrix. As with theCRS matrix,
no map is required at instantiation. Its functionality mirrors that of the CRS matrix, but with
operations being column-oriented.

Those functions which are different are shown in the public interface below.

CCS_Matrix class public interface

class CCS_Matrix

// constructor function

CCS_Matrix(int rows, int COIS, int nnz);

*

// access functions
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void getColSum(Vector& colSumVector) ;

int colLength(int CO1) ;

int getCol(int CO1, int length, double ‘coef, int &rowInd);

int getCol(int CO1, int length, double *coef);

int getCol(int CO1, int length, int &rowInd);

int putCol(int CO1, int cardinality, double *coef, int *rowInd);

int* getPointerToRowIndex(int& nnz) ;

int’ getPointerToRowIndex (int& length, int colNumber) ;

int* getPointerToColPtr (int& nnz);

//inquiry functions

int rowso ;

int columnso ;

int nonZeroso ;

// min/max functions

bool colMaxo const;

double colMax(int CO1) const;

bool colMino const;

double colMino const;

5.10 AztecDMSRmatrix/vectorand map classes

The AztecDMSR_Matrix class is simply a wrapper which encapsulates the DMSR
matrix storage format from the Aztec package and allows it to function as an ISIS++ matrix
class, working with other ISIS++ components such as solvers, preconditioners, etc. This
allows the core computational kernels (matrix-vector product) tobeusedbyan ISIS++ Krylov
solver, for instance. Details of the DMSR storage format may be found in the Aztec
documentation [13]. No Aztec source code is included in the ISIS++ code distribution. The
user is responsible for ensuring that a copy of the Aztec library is available to be linked
against. Additionally, the Aztec header file must be available, and needs to be slightly
modified. In the file “az_aztec.h”, all function prototypes which are declared as “extem ...”
need to be declared as ’’extem”C” ...”.

From the user’s point of view, the AztecDMSR matrix class behaves similarly to the
DCRS class, inheriting most of the RowMatrix base class functionality. The most significant
difference is that the Aztec data decomposition doesn’t require that each processor own
contiguous blocks of rows. Instead, the mapping is defined by arbitrary lists of rows.
Obviously, contiguous blocks of rows are still a possibility, with a linear decomposition being
supplied by default. A specialized Map class, the Aztec_Map (described below) must be used
at construction. The direct pointer access functions (get Point erToCoe f and

get Po i.nt erToCol Index) are not supported. After the matrix has been configured, data

may be loaded using the putcoe f function. Additionally, these matrices must be used in

conjunction with a specialized Vector class, the Aztec_Vector (also described below).

Below is a partial annotated header for the AztecDMSR class, again showing only those
functions which differ from other RowMatrix derivations.
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AztecDMSR_Matrix class Public interface

class AztecDMSR_IIatrix : public RowMatrix

// constructor function

AztecDMSR_Matrix (const Aztec_Map& map) ;

//modified configure function

void configure(int **rowCount) ;

//data load function

void putCoef(int row, int col, double value) ;

The configure function takes an “int **” as an argument instead of the IntVector
accepted by previously described implementations. The reason for this is that there is no
IntVector implementation that is compatible with the AztecDMSR data structures. In this
case rowCount is still a simple (single-dimensional) array ofrow lengths as before, butitis
declared as a double pointer since it can be allocated and initialized inside other functions.

Although the AztecDMSR storage format anddata decomposition indifferent to those
used by other ISIS++ matrix classes, the user doesn’t see any difference, for the most part.
The primary point at which the differences affect the user are in the map object, Aztec_Map.
Below is an annotated header for the Aztec_Map class.

Aztec_Map class public interface

class Aztec_Map : public Map

// constructor functions

Aztec_Map(int n, const CommInfo& commInfo) ;

Aztec_Map(int n, int **update, int N_update, const CommInfo& commInfo) ;

//query and data mapping access functions

int inUpdate(int globalIndex, int& localIndex) const;

int **getUpdateo const;

int **9etUpdateOrdering( ) COnSt;

int **9etOrderingUpdate () Const;

int **getExternalo const;

int **getExternIndeX( ) const;

int *getProcConfigo const;

const int’ getN_updateo const;

int **getDataOrgo const;

Aztec_Map reference notes:

● There are two ways to construct the Aztec_Map. If only the overall dimension nand a
CommInfo object are supplied, then the AZ_linear option is used internally to form a
linear (contiguous blocks ofrows) decomposition. Alternatively, theuser can supply the
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decomposition in the form of a list of local
and the number of local rows N_update.
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rows or an “update set” in the array update,

The inupdat e function determines whether the row with global number globallndex is in
this processor’s local update set. If it is, inupdate has a return value of 1 and that row’s
local index is returned in locallndex. If row globalhdex is not in the local update set,
inUpdate has a return value of O.

The getUpdate function returns a pointer to the list of global row numbers which make
up the local update set.

The getUpdateOrdering function returns a pointer to the list of local indices which
reflects how the local rows were re-ordered by the internal function AZ_trans f orm when
the f i llcomplete function was called.

The getOrderi.ngupdate function returns a pointer to the list of local indices which
maps back from the reordered local row numbers to the original ordering: i.e., the inverse
of the list returned by the getUpdat eOrder ing function.

The getExternal function returns a pointer to this processor’s list of external rows, or
rows from which information is needed for local calculations.

The getExternIndex function returns a pointer to the list which gives the local
numbering (after being reordered) of this processor’s external rows.

The getN_update function returns a pointer to the integer which is the number of rows
in the local update set. This is the Aztec equivalent of numLocalRows.

The getprocconf ig and getDataOrg functions are primarily used internally by
AztecDMSR_Marix and Aztec_Vector functions. They return arrays which store

information about the processor configuration and the data organization, respectively. For

detailed information, see the proc_conf ig and dat a_org descriptions in the Aztec

documentation [13].

As an example of how some of the Aztec_Map variables relate to each other, consider

the following declarations.

const int **uPdate . nap. getupdate ( ) ;

const int **updateOrdering = map. getUpdateOrdering ( ) ;

const int **~rderingupdate = map. getorderingUpdate ( ) ;

const i.nt **external = map. getExternal ( ) ;

const int **extern Index = map. getExtern Index ( ) ;

Then *update contains a sorted list of (global) row numbers to be updated on this processor.

Before f i 1 lComplet e ( ) has been called (i.e., before the internal matrix data has been re-

ordered), the following relation holds: if a row’s local index i is known, (‘update) [ i ]
gives that row’s global row number. The mapping arrays updateOrderi.ng and
order ingUpdate are available only after f il lcomplete ( ) has been called.

( *UPdate0rderin9 ) [ i 1 gives the local index of global row (‘update) [ i]. If only the
local (reordered) index i is known, then we can use the relation j = ( *orderingUpdate ) [ i ]
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and then the global row number is (‘update) [ j 1. For the external rows, *external
contains a sorted list of this processor’s external rows (global row numbers), and

( *externlndeX) [ i 1 gives the local (reordered) index of (*external ) [ i 1.

As mentioned, the AztecDMSR_Matrix class must be used with the Aztec_Vector class.
This is simply because the other ISIS++ vector classes can’t be instantiated with the
Aztec_Map and must have data corresponding to a contiguous block decomposition. In the
public interface given below for the Aztec_Vector class, only the constructor is shown,
because this is the only way in which it differs from the other vector classes from the user’s
point of view. All other differences are internal.

Aztec Vector class Public interface

class Aztec_Vector : public Vector

// constructor function

Aztec_Vector (const AZtec_Map& map) ;

6 Example Problem
A simple example problem is presented in this section as a concrete example of the

process of calling the ISIS++ package from an analysis program. This problem is solved
using the algebraic interface. A finite element interface has been developed, and is addressed
in a separate document. Information on the finite element interface can be found at URL
http:llwww.ca.sandia. ~ovlisislfei dots.html. This example problem utilizes a two-
dimensional heat conduction problem to generate a set of finite-difference equations that are
solved by ISIS++. The entire process of mathematical modeling, linear equation construction,
and solution is presented in sufficient detail so that this example can serve as an intermediary
to more complicated problems to be solved using ISIS++.

This section demonstrates the entire process of “solving a problem”, starting with the
underlying mathematical statement, proceeding thro~
in a system of linear algebraic equations, and
simultaneous relations. Also, the example problem
readily modified by the user to handle large or smal
response, ranging from smooth to singular.

6.1 Problem statement

gh the discretization process that results
terminating in the solution of those
s sufficiently “generic” so that it can be
equations, or a whole range of solution

The example problem represents heat conduction on a rectangular domain, which is a
class of problems that includes many other important engineering and scientific analyses, such
as steady-state diffusion, dispersion, electrical conduction, and membrane displacement. This
problem admits relatively simple discretizations (such as the finite-difference scheme
presented below), but can be easily generalized to more complex discretization schemes.

The geometry of the problem is a rectangular plate lying in the x-y plane, as shown in
the figure below. The rectangle has dimensions of a and b, and its natural directions are
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aligned with the coordinate directions as shown. On the perimeter of the rectangle, the
temperature field vanishes, and within the interior, steady-state heat conduction occurs with a

balance of conductance of heat energy within the plate, lateral convection from the plate’s
area (in the direction perpendicular to the page), and arising from sources within the plate.

b

1 a~

u = Oonperimeterofrectangle x

Figure 3. Geometry of Sample Problem

The balance of heat energy can be made precise by introducing appropriate definitions.
First, define u(x,y) to be the temperature distribution within the rectangular plate. Let c(x,y)
represent the thermal conductivity of the plate, which is taken to be a scalar because the plate
is composed of an isotropic material (in general, the thermal conductivity is a second-rank
tensor, but that complicates the sample problem in a manner not germane to the demonstration

purposes desired here). Take ~fx,yj to represent the surface convection coefficient, which

captures the (linearized) temperature-dependent transfer of heat from the top and bottom of

the plate. Finally, let s~x,y) represent the sources and sinks distributed throughout the plate,

with a positive sense representing a source of heat energy.

With these definitions, the governing boundary-value problem (BVP) for heat
conduction in the plate is given by the partial-differential equation (PDE) and boundary-
conditions (BC’S) defined by:

-[:(c(x,y):)+:[c,x>y);]+P(x>Y,u(x,Y)=s(x!Y)

u(O,y) = u(a,y) = O for O < y < b and u(x, O) = u(x,b) = O for O < x < a

In order to simplify the example problem development, take each of the material properties to

be a constant, so that a uniform isotropic problem is modeled, in that:

C(x,y) = co = constant, p(x,y) = p. = constant, s(x,y) = so = constant

With this simplification, the BVP takes the following form, which is amenable to an

elementary finite-difference discretization:

[)62U 62U
–C(, — —&2 + 42 + p,,u (x, y) = so
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u(O,y) = u(a,y) =Ofor O<y<b andu(x,O)=u(x,b)=O for O<x<a

6.2 Derivation of equation set

The governing BVP can be discretized by introducing standard difference relations to
replace the partial differential operators, and the resulting discrete problem is readily cast into *

the form of a system of linear equations. The process of constructing this set of equations
begins by constructing a grid of difference nodes, and then introducing a standard finite-
difference approximation for the Laplacian operator on each of these nodes.

The discretization geometry is shown in the figure below.

Y ~- a = NX*h
NX segments in x-direction

.,;
x b = NY*h

J
4> $’>

NY segments
b node (ij) in y-direction

<. y @

MX = NX + 1 = number of nodes in x-direction

MY= NY+ I= number of nodes in y-direction

\ node (i,j) is at x = (i-1) h,, y = (j-l)h,

Figure 4. Geometry of discretization.

There are two classes of nodes present in the discretization: interior nodes, where a
difference relation for the Laplacian operator can be written, and exterior nodes, where the
problem’s boundary conditions must be satisfied. In either case, an independent mathematical
relation can be written for each node, which results in a N x N system of linear relations that
can be solved using solution services provided by ISIS++.

In the case of interior nodes, the Laplacian difference relation is given by:

[)

ih+ai u;+,j – 2ui j + ui_l j Ui,j+,– 2ui,j + ui,j_,
——
&z~2 = ‘(hX~ ‘+ h,

ttocfe(i, j) )

On the exterior, the boundary condition specification is given by:

U1j = uMx,j = o‘i]=ui,~y=o ,

A vectorial storage format can be used to represent all of the nodal temperature values by

introducing a single subscript lc defined by:

k=i(MY)+j+l for i = O, 1, 2, ... NX; j = O, 1,2, ... NY
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This culminates in the following set of linear algebraic relations:

Left Edge:

Uk=o l<k<~y

Right Edge:

Uk=o JIX*Ny+l<k<~X*~y

Top Edge:

Uk=o kmodMY=O

Bottom Edge:

Uk=o kmodikfY=l

Interior Nodes:

[

hX2hY2p0
–u~,hY2–u~2hX2+u~3 2(hX2+hY2)+ 1 hX2hY2s0

–u~, hX2–u~, hY2 =
co co

where

k,=(i–l)*MY+j+l

k2=i*A4Y+j

k3=k=i*MY+j+l

kJ=i*MY+j+2

k~=(i+l)*MY+j+l

In practice, the matrix would be populated by looping over all the (i,j) nodes using a program
control structure such as the following:

for (i = O to NX)
for (j = O to NY)

k=i’lly+j+l
case:

left edge node
generate simple

right edge node
generate simple

top edge node
generate simple

bottom edge node
generate simple

interior node

equation for left edge

equation for right edge

equation for top edge

equation for top edge

generate complicated difference equation

The structureofthe resultingsystem of linearequations ispicturedbelow, for the case

ofNX= NY= 10. Note that because ofthe simple manner in which the boundary conditions
are implemented, the matrixis not symmetric (e.g., examine the initial rows and columns). It
is relatively straightforward toresymmetrize matrices arising from self-adjoint differential and
symmetric difference relations, but since ISIS++ incapable ofsolving non-symmetric systems
of equations, no attempt at symmetrizing these difference relations will be made.
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6.3 Overview

Figure 5. Sample Problem Matrix Structure

of code to generate problem

The C++ code required to generate the equations derived above is outlined below. (The
complete working program is supplied with the ISIS++ code distribution.) The first block
shown is the declaration of the various geometric and material parameters, named to match (or
augment, in the case of single-letter terms, like “a”) the actual parameter names from the heat
conduction problem:

/ I parameters defining the physical and discretized problem
int nx, ny, mx, my;
double conduct, convect, source;
double a_length, b_length;

Next, various program variables are declared, including those required to construct the

solution, such as the column indices (k_co lu.rm [ ] ) and matrix equation terms
(matrix_terms [ ] ) required to store the various nonzero elements of a given row of the

matrix.

// variables to construct matrices for the discretization
int i, j, k, m, n, num_cols;
int k_columns [5] ;
double x_size, y_size, sq_x_size, sq_y_size;
double sol_ factor, rhs_factor;
double rhs_term, matrix_ terms [5] ;

The next block of code expresses the initialization of the program data, including all

geometric, material, and discretization data required to express the matrix equations in a

simple form.

// initialize the physical problem parameters here
conduct = 100.0; //
convect = 1.0; //
source = 1.0;
a_length = 20.0; !;
b_length = 10.0; //

nx = 24; //
ny = 16; //
mx = nx + 1; II

isotropic thermal conductivity
lateral convection coefficient
distributed heat source term
length of rectangle in x-direction
length of rectangle in y-direction

nx = number of elements in x-direction
ny = number of elements in y-direction
KM = number of nodes in x-direction

w
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my=ny+l; // my = number of nodes in y-direction
n= mx*my; // size (number of equations) of problem

x_size = a_length/nx;
y_size = b_length/ny;
sq_x_size = x_size*x_size;
s~y_size = y_size*y_size;
sol_factor = 2.O*(s~x_size + sq_y_size) +

s~x_size*s~y_size*convect/conduct;
rhs_factor = sq_x_size*sW_size*sourcelconduct;

// now that we know the size of the problem, we can
// initialize the sparse matrix structures appropriately
Map map(n);

// construct vector for configuring the matrix structure.
Seq_IntVector myRowCount(map) ;

// get the row lengths to establish matrix structure.
// determine the number of nonzero terms in each row (k)
// of the matrix by stepping over the entire finite-
// difference grid (i,j)
for (i = O; i <= nx; i++) {

for (j = O; j <= ny; j++) {
k = i*my + j + 1;

// check for interior (difference) vs. exterior
// (boundary) nodes (these cases are treated separately
II in case we wish to generalize the boundary conditions)
if ((1 <= k) && (k <= my)) // left edge

num_cols = 1;
else if ((my’nx+l<=k) && (k<=mx’my)) // right edge

num_cols = 1;
else if ((k % my) == O)

num_cols = 1;
else if ((k % my) == 1)

num_cols . 1;
else // inter:

num_cols = 5;
myRowCount[k] = num_cols;

)
)

// construct solution and RHS vectors.
Seq_Vector x(map), b(map);

// top edge

// bottom edge

or node (difference

11 construct an “empty” matrix, then set its structure.
RsSCRS=Matrix A(map);
A.conflgure (myRowCount);

The following code generates the matrix on a row-by-row basis, using the same mathematical
relations presented earlier.

for (i = O; i <= nx; i++) (
for (j = O; j <= ny; j++) {

k=i’my+j+l;

// check for interior (difference) vs. exterior
// (boundary) nodes (these cases are treated separately
// to simplify generalization to more complicated
// boundary conditions)
if ((l<=k) && (k<= my)) { // left edge

num_cols . 1;
k_columns[O] = k;
matrix_terms[O] = 1.0;
rhs_term = 0.0;

}
else if ((my’nx+l<=k) && (k<=mx’my)) ( // right edge
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num_cols = 1;
k_columns[O] = k;
matrix_terms[O] = 1.0;
rhs_term = 0.0;

~lse if ((k % my) == O) (
num_cols = 1;
k_columns[O] = k;
matrix_terms[O] = 1.0;
rhs_term = 0.0;

}
else if ((k % my) == 1) {

num_cols = 1;
k_columns[O]
matrix_terms
rhs_term = O

}
else {

num_cols = 5,
k_columns[O]
k_columms[l]
k_columns[2]
k_columns[3]
k_columns[4]

// top edge

// bottom edge

= k;
o] = 1.0;
o;

// interior node (difference)

= (i-1)’my + j + 1;
= i*my+ j;

= i*my + j + 1;
= i*my + j + 2;

= (i+l)’my + j + 1;

matrix_terms[O] = -sq_y_size;
matrix_terms[l] = -sq_x_size;
matrix_terms[2] = sol_factor;
matrix_terms[3] = -sq_x_size;
matrix_terms[4] = -sq_y_size;
rhs_term = rhs_factor;

)

double ‘coeffs = A.getPointerToCoef (num_cols, k);
int *column_indices = A.getPointerToColIndex (num_cols, k);
for (m = O; m < num_cols; m++) {

column_indices[m] = k_columns[m] ;
coeffs[m] = matrix_terms[m] ;

)
b[k] = rhs_term;

}
}

II indicate matrix data is loaded and internal structures
// can be checked and finalized.
A.fillCompleteo ;

Now the data structures areloaded and the linear system can resolved. So the following code
instantiates and uses apreconditioner and solver.

// construct the preconditioned
Identity_PC preconditioned;

// construct the solver.
QPfR_Solver solver;

// declare strings for passing parameters to the solver.
char **paramStrings;
paramStrings = new char*[2]; // we’ll pass in 2 parameters
paramStrings[O] = new char[32]; //set max string length=32
paramStrings[l] = new char[32];

// now set the parameters
sprintf (paramStrings [0],“%s”,“maxIterations 10000”);
sprintf (paramStrings [1],’’%s”,”tolerance l.e-10”);

// now pass the parameters to the solver
int numParams = 2;
solver.parameters (numParams,parwStringS) ;
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// construct the system of equations object.
LinearEquations lse(A, x, b);

/[ set solver & preconditioned for the lse object.
lse.setSolver (solver);
lse.setPreconditioner (preconditioned) ;

// compute the preconditioned.
preconditioned. calculate;

// solve linear system AX = b.
int solveStatus = lse.solveo;

At this point, ifthe solve was successful, the solution vector is available inxand can beused
by the application code.

6.4 Results

The following figures apply to the problem data in the program listing above. This set
of parameters results in a small algebraic system (425 equations) which was solved by ISIS++
using the Quasi-Minimum Residual (QMR) and Conjugate-Gradient-Squared (CGS)
algorithm utilizing an identity preconditioned (i.e., no preconditioning). The convergence
histories ofthese two solution methods areshown inthe figure below.

4.00

T

/’---x Iteration Counter
O.Q t 1

0. 0 50.00

-4,001L _ uwi-VIinium Residual [QMRI

-8. oOQ _

(.(:l},.U:<W (Y::dii,li: \q; iillt:.I {{ ’(;S}

-12. OCLL

Figure 6. Thermal example problem convergence histories.

The results of this simulation are graphed in the contour plot shown below. Note that
the problem is doubly symmetric, although no attempt has been made in this example to take
advantage of this symmetry to reduce the size of the equation set. This neglect of symmetry
arises from two causes. The first reason is that the implementation of symmetry lines in a
simple finite-difference model requires specification of a Neumann (normal derivative)
boundary condition along the line of symmetry, and such a modification of a centered-
difference relation is non-trivial, and beyond the desired scope of this simple example
problem. The other reason is that since ISIS++ is designed to solve systems with millions of
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equations, there is no real need to utilize symmetry in this simple example merely to reduce
the already very small equation set size.

Figure 7. Contour plot of temperature field.

temperature field

min 0.000E+OO

rrax 1.044E-01

7 Installation Procedures

7.1 System requirements

p

+1 1500E-01

+I.1OOOE-O1
+1.0500E-01

>i$ +1.0000E-01
+9.5000E-02

+9 0000E-02
+8.5000E-02

+7.5000E-02
+7.0000E-02

+6 5000E-02
+6.0000E-02

I

.4. OOOOE-02
.,, +3.5000E-02

+3.0000E-02
+2.5000E-02
+2.0000E-02

+1 5000E-02
+1 OOOOE-02

+5.0000E-03
+0.0000E+OO

-5.0000E-03
-1. 0000E-02

The primary requirement for building ISIS++ is a sound C++ compiler. In fact, most of
ISIS++ can be built and used (serially) with that alone. However, the distributed-memory
components rely on the MPI message-passing library. Also, several of the algorithms use
dense linear algebra methods provided by the LAPACK and BLAS libraries.

Additionally, the automated building of the library requires a “make” facility. There is
also a “configure” script which uses the standard unix “sh” shell. As discussed below, the
distribution includes automated facilities for configuring and building ISIS++ using UNIX
makefiles.

7.2 Building the library

At the time of this writing, ISIS++ has been built and run on the following types of
computers:

● Cray T3D MPP (native and KAI C++ compilers)

. Cray T3E MPP (native C-t-+compiler)

. ASCI Red TFLOP (Portland Group compilers)

. Meiko CS-2 MPP (KAI C++ compiler)

. HP workstations (native and gnu compilers)
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. SGI workstations (native and gnu compilers)

● DEC alpha workstations (native, gnu, and KAI C++ compilers)

. Sun Solaris workstations (native and gnu compilers)

. Intel x86 processors running Linux (gnu compiler)

. Macintosh 68k and PPC processors running Mac 0/S (Symantec and Code Warrior
compilers).

The basic development environment and target platforms are UNIX systems, although
building and running ISIS++ on other platforms is a relatively straightforward matter based on
our experience so long as adequate compilers are available. Naturally, the distributed-
memory components are not available without MPI.

The installation scripts that are distributed with ISIS++ are targeted at UNIX systems.
Essentially, the installation involves running a configure script followed by “making” the
code. The entire process is set up to be run from the root ISIS++ directory, without need to
modify any of the lower-level make files. The installation process is also documented on the
web site and in the INSTALL file included in the distribution. We now present the basic
installation procedure.

To perform the standard UNIX installation process, carry out the following steps:

Step 1. From the root ISIS++ directory, type the command “configure”.

This will ask you a couple of questions such as whether to build for serial or parallel
execution, and (if it can’t find them) the paths to your system’s MPI directory and to your
data files (for when you run the test programs in the drivers directory). Note that the
script first searches the typical paths for auxiliary libraries (MPI, LAPACK, BLAS) and
will only prompt for information if it cannot find the libraries.

Step 2. Type the command: “make”.

If all went well, you now have the ISIS++ library, located in:

$ISIS_ROOT/lib/$ ISIS_ARCH/libisis_mpi.a (parallel case)
or $ISIS_ROOT/lib/$ISIS_ARCH/libisis_ser.a (serial case)

where $ISIS_ROOT is the path to the top-level ISIS++ directory and $ISIS_ARCH
represents your computer’s architecture. If it takes more than one attempt to make the
library (e.g., because one or more of your path variables was wrong), type the command

“make clean” before trying “make” again, to make sure that all of the objects get made
correctly.
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